Breaking News
recent

Deepest Ever Look into The Orion Nebula



The Orion Nebula in Infrared from HAWK-I
Image Credit:  ESO, VLT, HAWK-I, H. Drass
An international team has made use of the power of the HAWK-I infrared instrument on ESO’s Very Large Telescope (VLT) to produce the deepest and most comprehensive view of the Orion Nebula [1] to date. Not only has this led to an image of spectacular beauty, but it has revealed a great abundance of faint brown dwarfs and isolated planetary-mass objects. The very presence of these low-mass bodies provides an exciting insight into the history of star formation within the nebula itself.

The famous Orion Nebula spans about 24 light-years within the constellation of Orion, and is visible from Earth with the naked eye, as a fuzzy patch in Orion’s sword. Some nebulae, like Orion, are strongly illuminated by ultraviolet radiation from the many hot stars born within them, such that the gas is ionised and glows brightly.

The relative proximity of the Orion Nebula [2] makes it an ideal testbed to better understand the process and history of star formation, and to determine how many stars of different masses form.

Amelia Bayo (Universidad de Valparaíso, Valparaíso, Chile; Max-Planck Institut für Astronomie, Königstuhl, Germany), a co-author of the new paper and member of the research team, explains why this is important: "Understanding how many low-mass objects are found in the Orion Nebula is very important to constrain current theories of star formation. We now realise that the way these very low-mass objects form depends on their environment."

This new image has caused excitement because it reveals a unexpected wealth of very-low-mass objects, which in turn suggests that the Orion Nebula may be forming proportionally far more low-mass objects than closer and less active star formation regions.

The jewel in Orion’s sword.
Credit: ESO, IAU and Sky & Telescope
Astronomers count up how many objects of different masses form in regions like the Orion Nebula to try to understand the star-formation process [3]. Before this research the greatest number of objects were found with masses of about one quarter that of our Sun. The discovery of a plethora of new objects with masses far lower than this in the Orion Nebula has now created a second maximum at a much lower mass in the distribution of star counts.

These observations also hint tantalisingly that the number of planet-sized objects might be far greater than previously thought. Whilst the technology to readily observe these objects does not exist yet, ESO’s future European Extremely Large Telescope (E-ELT), scheduled to begin operations in 2024, is designed to pursue this as one of its goals.

Lead scientist Holger Drass (Astronomisches Institut, Ruhr-Universität Bochum, Bochum, Germany; Pontificia Universidad Católica de Chile, Santiago, Chile) enthuses: “Our result feels to me like a glimpse into a new era of planet and star formation science. The huge number of free-floating planets at our current observational limit is giving me hope that we will discover a wealth of smaller Earth-sized planets with the E-ELT.”




Source: ESO, VLT, HAWK-I, H. Drass, The bimodal initial mass function in the Orion Nebula Cloud, Robert Gendler, APOD


-------------------------------------------------------------------------------


La imagen más profunda de la Nebula de Orion


Remastered version by Robert Gendler
Un equipo internacional ha utilizado el potente instrumento infrarrojo HAWK-I, instalado en el VLT (Very Large Telescope) de ESO, para producir la imagen más profunda y completa de la nebulosa de Orión [1] obtenida hasta la fecha. Esto no solo ha dado como resultado una imagen de espectacular belleza, sino que se ha descubierto una gran abundancia de tenues enanas marrones y de objetos aislados de masa planetaria. La presencia de estos cuerpos de baja masa proporciona una nueva e interesante información sobre la historia de la formación estelar dentro de la propia nebulosa. 

La famosa nebulosa de Orión, de unos 24 años luz de tamaño, se encuentra en la constelación de Orión y es visible desde la Tierra a simple vista: parece una mancha borrosa en la espada de Orión. Algunas nebulosas, como Orión, están fuertemente iluminadas por la radiación ultravioleta de las numerosas estrellas calientes de su interior, de manera que el gas se ioniza y brilla intensamente. 

La relativa proximidad de la nebulosa de Orión [2], hace que sea utilizada como un laboratorio de pruebas ideal para entender mejor el proceso y la historia de la formación estelar, así como para determinar cuántas estrellas de masas diferentes se forman. 

Amelia Bayo (Universidad de Valparaíso, Valparaíso, Chile; Instituto Max-Planck de Astronomía, Königstuhl, Alemania), coautora del nuevo artículo y miembro del equipo de investigación, explica por qué esto es importante: "Para poder limitar las teorías actuales sobre formación estelar es muy importante comprender y conocer cuántos objetos de baja masa se encuentran en la nebulosa de Orión. Ahora somos conscientes de que la manera en que se forman estos objetos de muy baja masa depende de su entorno". 

Esta nueva imagen ha causado revuelo porque revela una inesperada riqueza de objetos de baja masa, lo que a su vez sugiere que la nebulosa de Orión puede estar formando, en proporción, muchos más objetos de baja masa que otras regiones de formación estelar más cercanas y menos activas. 

Los astrónomos cuentan cuántos objetos de diferentes masas se forman en regiones como la nebulosa de Orión para tratar de entender el proceso de formación de estrellas [3]. Antes de esta investigación, la mayor parte de los objetos encontrados tenía masas de alrededor de un cuarto de la masa de nuestro Sol. El descubrimiento de una plétora de nuevos objetos con masas muy inferiores en la nebulosa de Orión ha creado ahora un segundo máximo, con masas mucho más bajas en la distribución total de estrellas. 

Estas observaciones también sugieren que el número de objetos de tamaño planetario podría ser mucho mayor de lo que se pensaba. Aunque la tecnología para observar fácilmente estos objetos aún no existe, el futuro E-ELT (European Extremely Large Telescope) de ESO, que comenzará sus operaciones en 2024, está diseñado para perseguir objetivos como este. 

El investigador principal del equipo, Holger Drass (Instituto de Astronomía, Universidad Ruhr de Bochum, Alemania; Pontificia Universidad Católica de Chile, Santiago, Chile) afirma: "Para mí, nuestros resultados son como un vistazo a una nueva era de las ciencias que estudian la formación de planetas y estrellas. El enorme número de planetas que flotan libremente en nuestro actual límite de observación me está dando esperanzas para creer que, con el E-ELT, vamos a descubrir una gran cantidad de pequeños planetas del tamaño de la Tierra".

Fuente: ESO, VLT, HAWK-I, H. Drass, The bimodal initial mass function in the Orion Nebula Cloud, Robert Gendler, APOD



Con la tecnología de Blogger.