Breaking News
recent

The black hole at the heart of our galaxy revealed for the first time

 

First image of the black hole at the center of the Milky Way. This is the first image of Sagittarius A* (or Sgr A* for short), the supermassive black hole at the centre of our galaxy. It’s the first direct visual evidence of the presence of this black hole. It was captured by the Event Horizon Telescope (EHT), an array which linked together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The telescope is named after the “event horizon”, the boundary of the black hole beyond which no light can escape. Although we cannot see the event horizon itself, because it cannot emit light, glowing gas orbiting around the black hole reveals a telltale signature: a dark central region (called a “shadow”) surrounded by a bright ring-like structure. The new view captures light bent by the powerful gravity of the black hole, which is four million times more massive than our Sun. The image of the Sgr A* black hole is an average of the different images the EHT Collaboration has extracted from its 2017 observations. Credit: EHT Collaboration



The image of the massive object that sits at the very centre of our galaxy is a long anticipated one. In the past astronomers saw stars orbiting around something invisible, compact, and very massive at the centre of the Milky Way. A strong evidence that this object — named Sagittarius A* (pronounced “A-star”) — is a black hole, and today’s image provides the first direct visual evidence of it. 

 

The image was revealed during the simultaneous press conferences, which took place at the National Press Club in Washington, D.C., and the European Southern Observatory headquarters in Garching, Germany.

 

The black hole itself cannot be seen since it is completely dark, however the glowing gas around it reveals a telltale signature: a dark central region (called a shadow) surrounded by a bright ring-like structure. The new view captures light bent by the powerful gravity of the black hole, which is four million times more massive than our Sun. 

 

“We were stunned by how well the size of the ring agreed with predictions from Einstein’s Theory of General Relativity," said EHT Project Scientist Geoffrey Bower from the Institute of Astronomy and Astrophysics, Academia Sinica, Taipei. "These unprecedented observations have greatly improved our understanding of what happens at the very centre of our galaxy, and offer new insights on how these giant black holes interact with their surroundings." The EHT team's results are being published today in a special issue of The Astrophysical Journal Letters.

 

The black hole lies at about 27 000 light-years away from Earth, and its apparent size in the sky will be the same size as a doughnut on the Moon. To image it, the team created the powerful EHT (Event Horizon Telescope), which linked together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The EHT observed Sgr A* on multiple nights in 2017, collecting data for many hours in a row, similar to using a long exposure time on a camera.

 

The two black holes look remarkably similar, even though our galaxy’s black hole is more than a thousand times smaller and less massive than M87*. "We have two completely different types of galaxies and two very different black hole masses, but close to the edge of these black holes they look amazingly similar,” says Sera Markoff, Co-Chair of the EHT Science Council and a professor of theoretical astrophysics at the University of Amsterdam, the Netherlands. "This tells us that General Relativity governs these objects up close, and any differences we see further away must be due to differences in the material that surrounds the black holes.”


Sgr A*, pronounced sadge-ay-star, is a complex radio source at the center of the Milky Way Galaxy, and is home to a supermassive black hole, or SMBH. More than 300 researchers from 80 institutions around the world worked together to image SgrA* using the Event Horizon Telescope (EHT), a global telescope made up of multiple radio arrays working together. Visually, SgrA* looks a lot like M87*, the first black hole ever imaged. But, the new results have shown that they're as different as can be. Credit: NRAO/AUI/NSF, EHT Collaboration



However, imaging Sgr A* was much more difficult than M87*, even if our galactic centre lies closer to us. EHT scientist Chi-kwan Chan, from Steward Observatory and Department of Astronomy and the Data Science Institute of the University of Arizona, USA, explains: “The gas in the vicinity of the black holes moves at the same speed — nearly as fast as light — around both Sgr A* and M87*. But where gas takes days to weeks to orbit the larger M87*, in the much smaller Sgr A* it completes an orbit in mere minutes. This means the brightness and pattern of the gas around Sgr A* were changing rapidly as the EHT Collaboration was observing it — a bit like trying to take a clear picture of a puppy quickly chasing its tail.”

 

Because of that, the researchers had to develop sophisticated new tools that accounted for the gas movement around Sgr A*. While M87* was an easier, steadier target, with nearly all images looking the same, that was not the case for Sgr A*. The image of the Sgr A* black hole is an average of the different images the team extracted, finally revealing the giant lurking at the centre of our galaxy for the first time. 

 

“Now we can study the differences between these two supermassive black holes to gain valuable new clues about how this important process works,” said EHT scientist Keiichi Asada from the Institute of Astronomy and Astrophysics, Academia Sinica, Taipei. “We have images for two black holes — one at the large end and one at the small end of supermassive black holes in the Universe — so we can go a lot further in testing how gravity behaves in these extreme environments than ever before.” 

 

Progress on the EHT continues: a major observation campaign in March 2022 included more telescopes than ever before. The ongoing expansion of the EHT network and significant technological upgrades will allow scientists to share even more impressive images as well as movies of black holes in the near future.

Sources: ESO, Astronomy, Wikipedia,

Con la tecnología de Blogger.