Breaking News
recent

A star so big that could not become a supernova

This pair of visible-light and near-infrared Hubble photos shows N6946-BH1 before and after it vanished out of sight by imploding to form a black hole. The left image shows the star as it looked in 2007. In 2009, the star shot up in brightness to become over 1 million times more luminous than our Sun for several months. But then it seemed to vanish, as seen in the right panel image from 2015. A small amount of IR light has been detected from where the star used to be. This radiation probably comes from debris falling onto a black hole. Image credit: NASA / ESA / C. Kochanek, Ohio State University.


It is the first time in history that astronomers have been able to watch as a dying star was reborn as a black hole. It took the combined power of the Large Binocular Telescope (LBT), and NASA's Hubble and Spitzer space telescopes to go looking for remnants of the vanquished star massive dying star, only to find that it disappeared out of sight. 

The massive star, N6946-BH1, a red supergiant, 25 times as massive as our sun, that should have exploded in a very bright supernova, went out with a whimper instead of a bang, it fizzled out, and then it most probably left behind a black hole.

“Massive fails” like this one in a nearby galaxy could explain why astronomers rarely see supernovae from the most massive stars, said Christopher Kochanek, professor of astronomy at The Ohio State University and the Ohio Eminent Scholar in Observational Cosmology. 

As many as 30 percent of such stars, it seems, may quietly collapse into black holes—no supernova required.

“The typical view is that a star can form a black hole only after it goes supernova,” Kochanek explained. “If a star can fall short of a supernova and still make a black hole, that would help to explain why we don’t see supernovae from the most massive stars.”

Kochanek leads a team of astronomers who have been using the LBT to look for failed supernovae in other galaxies. They published their latest results in the Monthly Notices of the Royal Astronomical Society.

Among the galaxies they’ve been watching is NGC 6946, a galaxy 22 million light-years away that is nicknamed the “Fireworks Galaxy” because supernovae frequently happen there—indeed, SN 2017eaw, discovered on May 14th, is shining near maximum brightness now. Starting in 2009, one particular star in the Fireworks Galaxy, named N6946-BH1, began to brighten weakly. By 2015, it appeared to have winked out of existence. 

The astronomers aimed the Hubble Space Telescope at the star’s location to see if it was still there but merely dimmed. They also used the Spitzer Space Telescope to search for any infrared radiation emanating from the spot. That would have been a sign that the star was still present, but perhaps just hidden behind a dust cloud.

All the tests came up negative. The star was no longer there. By a careful process of elimination, the researchers eventually concluded that the star must have become a black hole.

It’s too early in the project to know for sure how often stars experience massive fails, but Scott Adams, a former Ohio State student who recently earned his Ph.D. doing this work, was able to make a preliminary estimate. 

This illustration shows the final stages in the life of a massive star that fails to explode as a supernova but instead implodes under gravity to form a black hole. From left to right: the massive star has evolved to a red supergiant, the envelope of the star is ejected and expands, producing a cold, red transient source surrounding the newly formed black hole. Some residual material may fall onto the black hole, as illustrated by the stream and the disk, potentially powering some optical and infrared emissions years after the collapse. Image credit: NASA / ESA / P. Jeffries, STScI.


“N6946-BH1 is the only likely failed supernova that we found in the first seven years of our survey. During this period, six normal supernovae have occurred within the galaxies we’ve been monitoring, suggesting that 10 to 30 percent of massive stars die as failed supernovae,” said Adams.

"This is just the fraction that would explain the very problem that motivated us to start the survey.”

To study co-author Krzystof Stanek, the really interesting part of the discovery is the implications it holds for the origins of very massive black holes — the kind that the LIGO experiment detected via gravitational waves. (LIGO is the Laser Interferometer Gravitational-Wave Observatory.) 

It doesn’t necessarily make sense, said Stanek, professor of astronomy at Ohio State, that a massive star could undergo a supernova — a process which entails blowing off much of its outer layers—and still have enough mass left over to form a massive black hole on the scale of those that LIGO detected.

“I suspect it’s much easier to make a very massive black hole if there is no supernova,” he concluded.

Adams is now an astrophysicist at Caltech. Other co-authors were Ohio State doctoral student Jill Gerke and University of Oklahoma astronomer Xinyu Dai. Their research was supported by the National Science Foundation.

Sources: Ohio State university, JPL, Wikipedia,
Con la tecnología de Blogger.